Optoelectronic Properties of Layered Titanate Nanostructure and Polyaniline Impregnated Devices
نویسندگان
چکیده
Integrated structure of titanate nanotubes and nanosheets is investigated for their optical, electronic and optoelectronic properties when combined with HCl doped polyaniline (PANI). HR-TEM, SEM and XRD were employed for detailed morphological and microstructural understanding of the orthorhombic titanate nanostructure. Chemisorbed oxygeneous groups are probed with Raman spectroscopy which are found to desorb under UV-Vis treatment. We note a blue shift of Ti-O-Ti Raman frequency in contrast to Na-O-Ti stretching. Valence band region of titanate is analyzed for contribution of O2p, O2s, Na2p and Ti3p. Photoluminescence with different excitation energies revealed the presence of oxygen vacancy related defects in titanate. The highly occupied electronic states of PANI were also analyzed until 40 eV below the Fermi energy. XPS core-level analyses revealed ~25% doping density in PANI. Edges of valence band and HOMO are determined to be at 2.45 eV and 2.54 eV below Fermi energy for titanate and PANI, respectively. ITO/PANI/ITO has depicted negative photoresponse and the magnitude of which is reduced ~4 times after combining with titanate nanostructure. Essentially the nanoscale architecture separates the emeraldine base and salt regions of PANI. This separation channelizes the charge carriers before trapping which reduces the magnitude of the negative photoresponse.
منابع مشابه
Synthesis of Three-Layered Magnetic Based Nanostructure for Clinical Application
The main objective of this research was to synthesize and characterize gold-coated Fe3O4 /SiO2 nanoshells for clinical applications. Magnetite nanoparticles (NPs) were prepared via co-precipitation. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm by using 0.9 M of NaOH at 750 rpm. The NPs were then m...
متن کاملCavity nonlinear optics with layered materials
Unprecedented material compatibility and ease of integration, in addition to the unique and diverse optoelectronic properties of layered materials, have generated significant interest in their utilization in nanophotonic devices. While initial nanophotonic experiments with layered materials primarily focused on light sources, modulators, and detectors, recent efforts have included nonlinear opt...
متن کاملPolyaniline nanofibers: a unique polymer nanostructure for versatile applications.
Known for more than 150 years, polyaniline is the oldest and potentially one of the most useful conducting polymers because of its facile synthesis, environmental stability, and simple acid/base doping/dedoping chemistry. Because a nanoform of this polymer could offer new properties or enhanced performance, nanostructured polyaniline has attracted a great deal of interest during the past few ye...
متن کاملZnS Nanoparticles Effect on Electrical Properties of Au/PANI-ZnS/Al Heterojunction
Hybrid polyaniline (PANI) based composites incorporating zinc sulfide (ZnS) nanoparticles (NPs) have been synthesized by using chemical oxidation technique. Schottky junction is constructed by depositing Polyaniline-zinc sulfide nanocomposite (PANI-ZnS NCs) on Au electrode. The results were compared with pure polyaniline. The I–V characteristics of the PANI-ZnS NCs hete...
متن کاملInfluence of the Vacancies on the Buckling Behavior of a Single–Layered Graphene Nanosheet
Graphene is a new class of two-dimensional carbon nanostructure, which holds great promise for the vast applications in many technological fields. It would be one of the prominent new materials for the next generation nano-electronic devices. In this paper the influence of various vacancy defects on the critical buckling load of a single-layered graphene nanosheet is investigated. The nanosheet...
متن کامل